Sentiment analysis¶
-
POST
/nlu/v1/agents/{agent_id}/processing/sentiment_analysis
Analyze the sentiment expressed in the user’s sentences in a conversation using a fixed model
Sample input
{ "text": "Quero retirar R$10 da poupança" }
Sample Response
{ "input_text": "Quero retirar R$10 da poupança", "global_sentiment": { "polarity": "neutral", "score": 0.9853106737136841 }, "metadata": { "pipeline": "pt-br/sentiment-1.0", "worker_id": "d6bfa9e6-4738-4a0d-a167-c416ced30e73", "transation_id": "c6b51d25-e0c2-4a6d-8746-d7373edcb550", "response_time": 0.09931516647338867 } }
- Parameters
agent_id – Agent ID
- Status Codes
200 OK – Success
404 Not Found – Agent not found
500 Internal Server Error – Internal error
- Response JSON Object
input_text (string) – Sentence sent.
sentiment (Dict[GlobalSentiment]) – Sentiment detected.
metadata (Dict[Metadata]) – Metadatas.
Global Sentiment Object
- Response JSON Object
polarity (string) – Sentiment polarity (negative, neutral, positive).
score (float) – Confidence score (0.0 - 1.0).
Metadata Object
- Response JSON Object
pipeline (string) – Type of pipeline used.
response_time (string) – Analysis time.